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Abstract
In this review, the research devoted to synthesising chitosan apatites, their 

biologically active properties, and their application in medical practice is 
analysed. The data are from articles published between 2001 and 2022 on 
the formation of calcium- and phosphorus-containing chitosan composites 
and the mechanism of their interaction.
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1. Introduction
Safe, non-toxic bio-preparations based on chitosan (ChS) and its derivatives are widely 

used in medical and veterinary practice. Calcium and phosphorus are biologically 
important elements that form the support systems of living organisms. Their deficiency 
contributes to the weakening of the bone system, the tendency to develop fractures and 
cracks, osteoporosis, tooth decay, changes in appetite and weight, numbness, stunted 
growth and development. Currently, diseases arising from calcium and phosphorus 
deficiencies, particularly osteoporosis, are included in the list of economically significant 
diseases.

With increasing life expectancy worldwide, the number of older people in each geographic 
region is increasing, and the incidence of fractures in 2050 is expected to reach 6.26 million 
[1]. Hence, the need for calcium- and phosphorus-containing drugs is increasing year by 
year. According to 2010 data, osteoporosis affected 200 million women and 120 million men 
worldwide, and the proportion increases with age. The disease affects 1 in 3 women and 1 in 
5 men over the age of 50 years [2]. It is critical to study the fundamentals of obtaining 
composites of ChS and hydroxyapatite (HA), the features of their interaction, establishing 
the chemical composition and structure, and their properties. The creation of polymer-apatite 
drugs needed to support calcium and phosphorus balance is of great interest. These 
preparations are import substituting and can be used to improve the efficiency of egg-laying 
hens as well as to prevent and treat osteomalacia and osteoporosis. This review systematises 
and analyses the most important research results on the production of ChS apatites and their 
application in traumatology, orthopaedics, and dentistry.

2. Features of the Chemical Interactions of ChS
Chitin (ChT) is a linear amino polysaccharide composed of N-acetyl-2-amino-2-

deoxy-d-glucopyranose units acting as the outer skeleton and support of the cuticle  
of crustaceans and insects. As a soluble derivative of ChT, ChS is a copolymer of 
d-glucosamine and N-acetyl-d-glucosamine. ChT and ChS are biologically active polymers 
[3, 4]. Depending on the conditions of the reaction, the degree of deacetylation (DD) of 
ChS can reach up to 95%. The DD cannot reach 100% because the acetamide groups are 
in the transposition and complete substitution of acetamide groups is impossible (Figure 1).

ChS is a rigid-chain polymer and a compositionally heterogeneous polysaccharide. It 
is characterised by molecular polydispersity, pH-dependent solubility, and a tendency to 
form hydrogen bonds. These abilities underlie its uniqueness and unpredictability. The 
deprotonated amino groups in ChS interact with d-metal ions to form chelates and metal 
complexes [5, 6]. The presence of electron-donating functional groups in ChS promotes 
the formation of intra- and intermolecular hydrogen bonds. This allows ChS to bind to 
organic compounds, including toxins. 
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Figure 1. The reaction that produces chitosan from chitin.
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The presence of hydrogen bonds reduces the solubility of ChS because the ChS-ChS 
hydrogen bonds are stronger than the ChS-solvent hydrogen bonds. ChS swells and 
dissolves in an acidic medium – that is, in organic and mineral acids (vinegar, oxalate, 
lemon, amber, hydrochloric acid, etc.). The reactivity and physicochemical properties of 
ChS are directly related to will pH of the medium:

In an acidic medium, the amino groups of ChS are protonated. At pH 6.5, phase 
separation occurs and ChS precipitates [5]. 

ChS is chemoselective: deprotonated amino groups, as well as hydroxyl (-OH) groups on 
carbons C3 and C6, allow ChS to undergo nucleophilic substitution (SN) and addition (AN). 
It should be noted that by varying the synthesis conditions, it is possible to obtain N- and 
O-derivatives of ChS owing to the presence amine (-NH2) and -OH groups (Figure 2).

ChS possesses unique physicochemical and biological properties, among which its 
biocompatibility, antimicrobial effect, and immunomodulatory properties, can be 
distinguished. ChS is also an antiviral, fungicidal, bioavailable, hypoallergenic, and 
harmless natural polymer that promotes tissue regeneration [7-9]. The ability to use ChS 
obtained from various sources is determined by a unique combination of several 
physicochemical and biological properties:

 – high reactivity;
 – biocompatibility;
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 – biodegradability; 
 – bacteriostatic activity;
 – immune-stimulating activity; and
 – selectivity, with excellent adsorption capacity of aqueous solutions, solvents, and 

especially heavy metals.
ChS is used in dentistry to treat conditions such as gingivitis and periodontitis because it 

rebuilds the connective muscle tissue that covers the gums. ChS is also used as an artificial 
skin substitute and has been found to have no side effects after tissue implantation [10].

The role of functional biomaterials in tissue engineering in medicine and veterinary 
medicine is invaluable. Biomaterials must meet a number of requirements, in particular, 
maintain the shape and dimensions of tissues, be biodegradable and hypoallergenic, have 
minimal side effects, and have a mechanically strong porous structure that stimulates 
tissue growth [9]. ChS possesses these properties: its biodegradation, bioavailability, and 
bioactive properties make it an effective biopolymer that can be used in tissue engineering, 
including the regeneration of skin, bones, liver, nerves, and muscles [11-16].

Due to its unique properties, ChS is used in more than 80 branches of the economy. 
One of the advantages of ChS is its renewability, unlimitedness, and variety of sources for 
its production. ChS is isolated from carapaces, fungi, dead bees, and other sources [17]. 
There has also been great interest and investigation of the various derivatives and 
modifications of ChS obtained from Bombyx mori.

3. Synthesis and Properties of Calcium HA
HA – with the chemical formula Ca10(PO4)6(OН)2 – differs from other calcium 

phosphates by isomorphism, thermal and chemical stability, composition stoichiometry, 
and structural properties similar to the skeletons of humans and living organisms [18]. 
There are several different methods to synthesise HA [19-22], including (1) liquid phase 
synthesis (wet method), (2) solid-phase synthesis (dry method), (3) hydrothermal 
synthesis, (4) sol-gel, and (5) hydrolysis. 

Highly dispersed powdered HA is usually obtained by a two-way exchange reaction as 
follows (liquid-phase synthesis):

10СаX2 + 6Y2HPO4 + 8YOH →Ca10(PO4)6(OН)2↓ +20YX + 6H2O 

where X = NO3
-, Cl−, orCH3COO− and Y = NH4

+, K+, or Na+

The interaction between any calcium and phosphate (PO4
3-) salts and the composition 

of the target reaction product depend on the pH, duration of synthesis, temperature, and 
the calcium-to-phosphorus (Ca/P) molar ratio in solution. The formation of HA occurs  
at relatively low temperatures or within a few seconds during long-term recrystallisation 
of amorphous calcium phosphate (AKP) at >50°C. Usually, nonstoichiometric HA is 
formed, namely Cа10-х(НРО4)х(РО4)6-х(ОН)2-х, where x depends on the synthesis conditions 
[23, 24]. For example, for the synthesis of HA gel, aqueous solutions of ammonium 
hydrogen phosphate with calcium salts are stored under strong conditions for 10 days in 
a highly alkaline medium (pH 10-11) and washed with distilled water to pH 7.0-7.2 [25]:

10CaX2 + 6(NH4)2HPO4 + 8NH4OH→Ca10(PO4)6(OH)2 + 20NH4X + 6Н2О,

where X = Cl- or NO3
-. If the synthesis is carried out according to the above scheme at 

pH 4-5, a mixture of monoclinic syngonite brushite (CaHPO4·2H2O) or brushite and 
triclinic-syngonite monetite (CaHPO4) can be obtained: 
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CaX2 + Y2HPO4 + H2O → CaHPO4×2H2O + 2YX,

where X = NO3
-, Cl-, or CH3COO- and Y = NH4

+, K+, or Na+ (at 70-90°C) [26].

HA has been obtained from calcium nitrate and ammonium hydrogen phosphate in an 
aqueous solution at Ca/P ratios of 1.31 and 1.64, respectively, after a 48-h reaction [27]. 
The authors compared the physicochemical properties of these samples with HA obtained 
at a Ca/P ratio of 1.56. X-ray diffraction analysis showed the presence of phases 
corresponding to HA and β-calcium phosphate.

In the synthesis of HA, it is important to pay attention to its crystalline and amorphous 
structure. The first solid phase, formed upon rapid stirring of aqueous solutions of salts 
containing Ca2+ and PO4

3-, consists of AKP. They are thermodynamically unstable 
compounds that, if not stored under dry conditions or with the addition of a stabiliser, 
transform spontaneously into crystalline calcium orthophosphate (CaPO4) – that is, 
calcium apatites [28]. One of the special properties of calcium apatites is their solubility 
in acidic media. Describing the degree of dissociation, chemical changes occur with all 
ions during diffusion through the Nernst layer. The chemical composition of the apatite 
surface during melting, sorption, and decomposition; the initial stages of porosity; ion 
sorption; surface diffusion; and specific effects during decomposition are critical factors 
[29]. In addition to materials based on HA, regenerative or fully absorbable materials have 
been elaborated. They are based on the use of a porous resorbed matrix that carry proteins 
and bone cells for tissue engineering.

Calcium phosphate–based materials such as HA, tricalcium phosphate (TKP, 
Са3(РО4)2), and carbonate-substituted carbonate-hydroxyapatite (KHA) possess effective 
biological properties, high protein adsorption, good osteoclast function and osteoblast 
formation in tissues, and participation in bone regeneration [30].

Researchers have created HA composites that closely resemble bone tissue. These 
composites comprise polymers such as ChS, collagen (Col), and gelatine (G). As a result, 
some of the ceramic properties of HA, such as its intrinsic fragility, the structure, and 
migration of particles from their places of residence, can be ameliorated. Studies suggest 
that biocomposites for biologically active and biodegradable artificial bones and bone 
deficiency [31]. The main component of bone tissue (>75%) is calcium, and carbonate 
accounts for about 4% [32-34] up to 7% [35].

When evaluating natural and synthetic apatites, there is intense assimilation of РО4
3- 

according to Fourier-transform infrared (FITR) spectroscopy. The carbonate groups that 
make up KHA are located on a hexagonal axis that holds the -OH (A-type exchange) or 
РО4

3- (B-type exchange) groups. This tissue is characterised by the presence of mixed AB 
types [36, 37].

The nature of calcium phosphates is diverse. Their Ca/P molar ratio is about 1.67. It 
was found that at the ratio Ca/P>1.67, when interacting with water, a strongly alkaline 
medium is obtained. And at Ca/P<1.67, it leads to the formation of insoluble and unstable 
composites when interacting with water or physiological fluids [38]. Calcium phosphates 
at a Ca/P ratio of <1.67 include TKP, calcium pyrophosphate (CPP, Са2Р2О7), calcium 
polyphosphate ((Са(РО3)2)n), and KHA (Na2O-СаО-Р2О5, Na2O-СаО-Р2О5-SiO2,  
K2O-СаО-Р2О5) [39]. Metal-HA has been synthesised by replacing calcium in HA with metals 
such as zinc (Zn), copper (Cu), and magnesium (Mg). The authors found more effective 
biological activity for Са10-х-z(Mez(HPO4)y(РО4)1-y)6(ОН)2 and Са10-х-z(Сuz (HPO4)y(РО4)1-y)6(ОН)2, 
containing 1% Cu [40]. Ag Са(10-x)Agx(РО4)6(ОН)(2-x), = 0.3 (Ag-HА, Ca/P=1.616) have 
also been synthesised. It possesses antibacterial properties when applied at the implant 
surface. The molecule has a Ca/P ratio of 2.25 ± 0.25 and a (Ca+Ag)/P ratio of 2.12 ± 0.22 [41].
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In general, biocomposites containing CaPO4 are the main raw material used in 
elaborating modern technologies for obtaining hybrid biomaterials for medicine. It is 
desirable to synthesise calcium phosphate composites with polymers to increase their 
elasticity and bioavailability. 

4. Synthesis and Application of Composites of Natural Polymers with HA
In recent years, a huge amount of research has been carried out on composite materials 

and bioadditives to improve the physicochemical and biological properties of bone tissue, 
with the aim to prevent and treat osteoporosis. These composite materials include ‘ChS-
HA’, ‘Col-HA’, ‘Col-ChS-HA’, ‘Col-bioglass’, ‘ChS-G’, ‘Col-fibrin’, ‘HA-protein’, and 
‘fibrin-apatite’ [42, 43]. Composites of calcium phosphate, HA, and TKP with a ChS-G 
complex have been synthesised at molar ratios of 100/0, 90/10, 70/30, 50/50, 30/70, 10/90, 
and 0/100. These composites contain ≥75% calcium phosphate nanoparticles (NPs) and 
have a porous structure with a porosity of ≈95% [44]. 

The influence of G and HA on the physicochemical properties of their composites has 
been investigated. By increasing the G amount, the solubility and plasticity of the 
composite also increased. Mechanically strong and biodegradable G-HA composites have 
been recommended for use in orthopaedic tissue engineering [26].

In an aqueous solution at 37°C, an organomineral nanocomposite (OMC) of calcium 
HA, namely Ca(OH)2–H3PO4–[C6H7Oх(OH)3-x(OCH3)x]n–H2O, was synthesised with 
methylcellulose (MC) [C6H7O2(OH)3-x(OCH3)x]. Agglomerates of OMC nanocrystals were 
obtained by the interaction of HA (150 nm long and 30 nm diameter) with MC (200-500 nm). 
Improving the properties of the implant on the base synthesised OMC reduces the possible 
migration of HA into the surrounding tissues owing to the connection between HA NPs 
and MC. In addition, OMC based on polysaccharides significantly increased the solubility 
of HA and improved the implantation efficiency [45, 46].

The physicochemical properties and microstructure of composites containing ChS-G 
and fillers of various chemical compositions of phosphate-calcium materials – HA, TKP, 
KHA and orthocalcium phosphate (OKP) – have been investigated. The obtained granular 
materials are elastic with a porosity of 80%, a pore size of ≤300 μm, and are recommended 
for use in medicine as porous materials, as well as in the preparation of HA coatings on 
titanium implants [47]. 

Researchers have also produced composites consisting of HA-G and HA-G-Ag and 
have investigated their porosity and bioactivity in vivo, and morphology, phase composition, 
and chemical interactions on the surface. When the HA-G-Ag composite was introduced 
into a bone defect, it showed high biocompatibility, antibacterial and osteoconductive 
properties [48].

The interaction between mixtures of CaCl2 and ChS-polyvinyl alcohol (PVA) (50:50) 
and their physicochemical properties have been studied. The X-ray spectrum revealed the 
chemical interaction between ChS-PVA and CaCl2 and there was an increase in the 
mechanical strength of the films. Composites are recommended for use in biomedical 
practice and food packaging [49, 50].

HA and ChS/PVA composites at ratios of 1:1, 1:3, and 3:1 have been obtained. 
Glutaraldehyde and glycerine have been used as crosslinking agents and plasticisers. The 
obtained composites were used to stimulate the growth and renewal of bone tissue [51].

Col-HA composites (Ca/P ratio = 1.67) with an adjustable degree of porosity, density, and 
mechanical properties can be obtained by varying the synthesis conditions. The relationship 
between the concentration of Ca2+ and the properties of composites has been studied in porous 
structural composites consisting of ChS-Col and mineralised ChS-Col-HA [52-54].  
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The authors obtained ChS-Col-calcium phosphate composites with porosity ≤23%, 
containing 26%-30% Col. To obtain microspheres of ChS calcium phosphate instead of 
HA, CaCl2 and NaH2PO4 were used at a Ca/P ratio of 2:1 [55].

Composites based on ChS-Col bound with calcium aluminate have been proposed as 
odontoblast-like material for dental pulp stem cells. The biomembrane was obtained by 
mixing Col gel with a solution of ChS (2:1) with the subsequent addition of bioactive 
aluminate calcium cement as a mineral phase. The biological activity of the samples was 
controlled for 7, 14, and 28 days [56].

PVA-apatite coatings on titanium substrates containing CaCl2 and NaH2PO4 electrolytes 
were obtained by electrochemical deposition. Depending on the conditions, apatite-polymer 
coatings containing CaHPO4·2H2O, Ca(OH)2, amorphous Ca3(PO4)2×nH2O, and HA – 
Ca10(PO4)6(OH)2 were recommended for coating the surface of titanium implants [57]. 

A composite based on bacterial cellulose from Gluconacetobacter xylinus (CGX) and 
HA was synthesised; the morphology of the films was studied using scanning electron 
microscopy (SEM). HA crystals were arranged monodisperse in CGX microfibrils. The 
researchers found the following percentages of interactions between the organic and 
inorganic components of the CGX/HA composite: 50%-56% interfacial electrostatic 
bonds, 40-46% van der Waals forces, and 2%-7% hydrogen bonds. The presence of 
electrostatic bonds between calcium phosphate and bacterial cellulose was investigated by 
modelling. The researchers determined that the energy of interaction of calcium phosphate 
with bacterial cellulose depended on the chemical structure of HA and the morphology of 
calcium phosphate [58-60].

Composites of the sodium salt of carboxymethylcellulose (Na-CMC) with HA have 
been obtained, and their physicochemical properties have been investigated. The 
researchers determined that carboxyl groups of Na-CMC interact with Ca2+ of apatite. 
Moreover, HA was distributed uniformly in the polymer matrix [61].

In another study, the authors obtained a composite based on ChS-HA-starch and 
investigated its properties compared with a ChS-HA composite. The ChS-HA-starch 
composite had hydrogen bonds between the -OH and -NH2 groups of ChS and the -OH 
groups of starch and HA [62].

Silk fibroin is used as a good matrix and antimicrobial agent in tissue engineering. 
Composites suspended with calcium phosphates are biodegradable in living tissues [63].

5. Synthesising ChS-HA Composites and Their Physicochemical Properties
In the literature [64], researchers have reported several methods to synthesise ChS-HA 

composites. Some methods include forming nanocomposites of the same microstructure 
synthesised under in situ conditions [64, 65], precipitation [66], electrospinning [67-71], 
hybrid composites [72, 73], solvent evaporation [74], in situ chemical methods [75, 76], 
freezing and lyophilisation [77, 78], combined sintering and freezing, drying methods 
[79], statistical energy harvesting [80], conventional mixing and heating [81], a biomimetic 
method [82-84], a low-temperature, wet chemical method [46], a thermal phase separation 
method [85], a double membrane diffusion method [86], electrochemical deposition and 
bonding [87-89], electrophoretic deposition [90, 91], mixing of natural HA with ChS [92], 
and bilateral diffusion [93](Table 1).
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Table 1. Methods to prepare chitosan-hydroxyapatite (ChS/HA) composites.

No Method Initial components, ChS/HА 
(Са/Р ratio = 1.67) Ref.

1

Simple in situ hybridisation: calcium 
and phosphate salts are obtained at 
a Ca/P ratio of 1.67 and dissolved 

together in acetic acid; ChS powder 
is added under stirring. The mixture 
precipitates in an alkaline medium 
at pH 9-10, forming a gel. The final 

product is then washed and dried

ChS/Ca(NO3)2·4H2O + KH2PO4 [72]

2

Casting and solvent evaporation 
method: the temperature used to 

evaporate the solvent is defined as the 
solvent evaporation temperature

ChS/Ca(NO3)2·4H2O + 
(NH4)3PO4·3H2O

[74]

3

In situ chemical method: hydrogel ChS 
membranes are immersed in 10 ml 

of calcium salt solution at 37°C, pH 
7.4 for 2 h. Then, it is removed from 
moisture and dried in a solution of 

Na2HPO4 and then air dried at 37°C

ChS/CaCl2 + Na2HPO4 [76]

4

HA/ChS bilayer scaffolds: the HA/
ChS bilayer scaffolds are fabricated 

by placing the HA scaffolds into 
cylindrical silicon moulds and adding 
3 wt.% ChS solution. The moulds are 
frozen and lyophilised up to complete 

removal of the frozen solvent. 
Then, HA/ChS bilayer scaffolds are 

neutralised using a 0.1 M sodium 
hydroxide solution, frozen, and 

lyophilised. Finally, the resulting  
HA/ChS bilayer scaffolds are sterilised 

using ethylene oxide

ChS + HA (H3PO4/Ca(OH)2) [79]

5

In situ coprecipitation using 
electrospinning: HA synthesis is 

carried out in the presence of polymers 
such as ChS and PVA to produce fibres

ChS/H3PO4 + Ca(OH)2 [85]

ChS/Ca(CH3COO)2 + 
(NH4)2HPO4/NH4OH [71]

KH2PO4/CaCl2/EDTA + ChS/
PVA [69]

6
The biomimetic method is based on 

obtaining biomaterial that corresponds 
to bone

ChS/CaCl2 + NaH2PO4 + 
phosphate ChS [82]

ChS/CaCl2 + Na2HPO4 [83] 
ChS/Ca(CH3COO)2 + 

NaH2PO4·H2O and ChS/CaCl2 
+ (NH4)2НPO4

[84]
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No Method Initial components, ChS/HА 
(Са/Р ratio = 1.67) Ref.

7

Double diffusion method (freezing 
and lyophilisation): ChS sponges are 
mineralised in a diffusion chamber 
consisting of two parts separated by 
a circular hole in the centre, where 
ChS is poured. At pH 7.4, buffered 
solutions of calcium and phosphate 

salts are obtained with a Ca/P ratio of 
1.67. Diffusion through ChS is carried 

for 4-48 h

ChS/CaCl2 + NaH2PO4 [86]

ChS + CaCl2/NaH2PO4 [77]

8

Electrophoretic deposition: suspension 
based on ChS and calcium and 

phosphate salts at a Ca/P ratio of 1.67 
are brought to pH 9-10 and precipitated 

using various metal electrodes

ChS + HA (Ca(NO3)2·4H2O/
(NH4)2НPO4)

[88]

ChS + HA [81]

ChS/Ca(NO3)2·4H2O + 
NaH2PO4

[89]

9

Precipitation method (freezing and 
lyophilisation): a suspension based on 
ChS and calcium and phosphate salts 

at a Ca/P ratio of 1.67 is brought to pH 
10-11 and precipitated. The samples 
are lyophilised and dried by freezing

ChS + CaCl2/Na2HPO4 [94]
ChS + CaO = 51.91%;  

P2O5 = 38.25%; MgO = 0.60%; 
Na2O = 2.84%

[95]

ChS+ CaCl2/NaH2PO4 [96]
ChS/H3PO4 +Ca(OH)2 [97]

ChS + nano HA [78]
ChS/CaCl2 + NaH2PO4 [98]

ChS + HA (H3PO4 + Ca(OH)2) [99]
ChS/CaCl2 + KH2PO4 [100]
ChS/Ca(CH3COO)2  

+ NaH2PO4
[101]

ChS/Na2HPO4 + CaCl2 / 
Ethanol [102]

ChS + KHA + (NH4)2CO3 [42]

10

One-step coprecipitation: the mixture 
of ChS and CaCl2 is titrated with 

NaH2PO4 solution at a Ca/P ratio of 
1.67 and precipitated under alkaline 

conditions

ChS/CaCl2 + NaH2PO4 [103] 

11

Precipitation method: a suspension 
consisting of ChS and calcium and 

phosphate salts at a Ca/P ratio of 1.67 
is precipitated at pH 10-11

ChS + HA [64]
ChS + HA [104]

ChS/Ca(NO3)2·4H2O + 
(NH4)3PO4·3H2O

[105]

ChS + nano HA [106]
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According to the literature, ChS/HA composites have been synthesised from 1 M 
solutions of CaCl2 and KH2PO4 at a Ca/P ratio of 1.67, instead of HA, and low-molecular-
weight ChS with a DD of ≥90%. The researchers obtained granules by precipitating ChS/
HA with 5%-7% NaOH; they were then washed with distilled water until reaching a neutral 
pH, frozen, and dried [100].

ChS/HA and ChS/dicalcium phosphate dihydrate (DCDH) were synthesised by 
membrane diffusion [94], and their physicochemical properties were investigated. A solution 
of ChS and CaCl2 was placed in a semiconductor membrane and immersed in a phosphate 
solution. After some time, the resulting suspension was freeze-dried. The organic and 
inorganic contents determined by using thermogravimetric analysis. According to SEM, the 
composites formed a porous structure. The inorganic content was 35%-45%. X-ray 
diffraction analysis revealed the formation of HA and DCDH crystals in the polymer matrix.

In a water bath at a Ca/P ratio of 1.67 and 40ºC, a mixture of ChS and CaCl2 was added 
to Na2HPO4 and stirred vigorously. Then, the mixture was precipitated with 1 M NaOH, 
washed with distilled water, and dried at low pressure. ChS/HA was synthesised at several 
molar ratios – 30/70, 50/50, 70/30, and 85/15 – and identified by IR spectroscopy, X-ray 
structural analysis, and thermal analysis. The composites were stable up to 200°C [103].

Maria et al. [95] synthesised HA powders heated to 400°C (content: CaO 51.9%; P2O5 
38.3%; MgO 0.6%; Na2O 2.8%) and 700°C (content: CaO 52.3%; P2O5 38.7%; MgO 
0.6%; Na2O 2.1%). HA of the powdered composites interacted with microcrystalline ChS 
of various molecular weights in mass ratios from 9-1 to 1-9.

Researchers obtained ChS-HA composite fibres by coagulation. For this, they 
coagulated the ChS-NaH2PO4 solution in a special bath filled with Ca2+ until homogeneous 
and then reacted it with NaOH to form a fibrous matrix of HA. The mechanical properties 
of the fibre depended on the NaH2PO4 concentration (0.03 M) in the ChS-NaH2PO4 
solution [102].

In engineering, several types of polymers and bioceramic materials such as HA 
composites with various polymers have been elaborated to improve the bioactive, chemical, 
and mechanical properties of bone tissue. This effort has contributed to improve a number of 
ceramic properties of HA: internal fragility, structure, and mixing of particles from their 
location. The authors concluded that these HA hybrid composites are advantageous because 
the polymers can effectively interact with the tissue surrounding the bone [109].

Silicon-containing apatite prepared from Na2SiO3 was obtained and its interaction with 
ChS was studied. The authors determined that HA [Ca10-xNax(PO4)6-x(CO3)x(OH)2] is 

No Method Initial components, ChS/HА 
(Са/Р ratio = 1.67) Ref.

12 Mixed
ChS + Natural HA/CaO/ZnO [94]

HA mixing with ChS [107]

13

Freeze drying technique: ChS/dextran/
nano-HA composite scaffold is 

synthesised via the blending method. 
Then, the mixture is moulded, frozen 
to freeze the solvent, and lyophilised 
in a freeze-dryer at -90°C for 48 h to 

obtain porous scaffolds

ChS/ Dextran + 
nHA((Ca(NO3)2×4H2O/ 

NаН2PO4))
[108]
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distributed as NPs in the ChS matrix. The effect of the molecular weight of CS on the 
physicochemical properties and thermal stability of the ChS-HA nanocomposites at 600 
and 1000°C was established [84].

ChS/HA composites have also been synthesised for application in bone engineering. 
The effect of synthesis conditions on the preparation of nanocrystalline structures of 
apatite has been studied. HA and ChS formed a relatively stable composition in 50/50 
ratio. Loss of A-type carbonate ions in HA occurred above 700°C. It was possible to obtain 
a non-porous composite of A-type by treatment at 1100°C that is closer to the chemical 
composition of healthy bone tissue [98].

Researchers aimed to determine the optimal composition of ChS/HA composite. To this 
aim, they synthesised a porous structural composite comprising microcrystalline chitosan 
(MKChS), HA, and β-tricalcium phosphate (β-TKP) with good adsorption properties. 
During the investigation, they obtained MKChS-ß-TKP-HA composites in various ratios of 
components and their chemical composition was confirmed on the base of IR spectra. X-ray 
analysis of calcium phosphate powders has shown their significant amorphous structure at 
2Ө between 10° and 20° relative to HA, but ChS/ß-TKP exhibited a completely amorphous 
structure. MKChS/ß-TKP had very high Ca2+ PO4

3- at a 2:1 ratio [104].
Obtaining ChS-HA nanostructures by the simplest method after morphological 

analysis of ChS and ChS-HA has allowed researchers to observe irregular, but 
crosslinked, porous nanocomposites with a more distributed surface area. X-ray and IR 
spectral analyses confirmed the presence of highly crystalline non-porous HA [110]. 

6. Preliminary Scheme Regarding the Interaction Between ChS and HA
Researchers have proposed several mechanisms to form apatite and phosphate 

composites with ChS. These mechanisms depend on the initial components and synthesis 
conditions. Ca2+ play an important role in the interaction between ChS with HA (Figure 3) 
[62]. Ca2+ appear on the surface of HA crystals and firmly hold the structure owing to 
electrostatic bonds [64, 111, 112]. Consequently, ChS forms crosslinks between NH2 and 
Ca2+ on HA. The interaction between free NH2 and protonated amine (NH3

+) groups of 
ChS with a solution of acetic acid with HA is characterised as follows:
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The presence of Ca2+ and PO4
3- in the reaction mixture causes the formation of ChS/HA 

composites owing to electrostatic interactions between C-NH3
+ and Ca2+ and PO4

3-, and/or 
C-Ca2+ and C-PO4

3- [72, 113]. They also form hydrogen bonds between the -OH and -NH2 
groups of ChS and the -OH groups on the HA surface (Figure 4) [74, 108, 110, 113].

The IR spectrum of ChS shows methylene-CH2, amino-NH2, methylol-CH2OH, and 
aminomethylene-CH2NH2 groups. The IR spectra of ChS-HA samples show changes in the 
amide I and amide II groups in ChS, indicating the interaction between ChS and HA. 
These interactions can be attributed to hydrogen bonds between -NH2 and -OH groups and 
interactions between -NH2 and Ca2+. The more the absorption bands of the ChS amino 
group move in the direction of decreasing wavelengths, the more amine groups of ChS 
move in the direction of decreasing wavelengths, and the stronger the hydrogen bonds and 
molecules between these groups [114]. In the investigation of the interaction of the 
components in the complex of ChS and β-TKP/HA, the authors suggested that Ca2+ and 
PO4

3- interact with amino groups of ChS (Figure 5) [104].
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Ca2+ ions located on the HA surface can bind donor-acceptor (ion-coordination) groups 
with free -OH and -NH2 of ChS, while PO4

3- can bind with partially NH3
+ groups (Figure 

6) [109]. Thus, researchers have established that ChS can interact with HA through donor-
acceptor (ion-coordination) bonds, ionic bonds, hydrogen bonds between the -OH and 
-NH2 groups of ChS and -OH groups on the HA surface, and electrostatic interactions, 
among others. 

There are various assumptions regarding the mechanism by which ChS interacts with 
HA. Ca2+ interact with amino groups of ChS and have fermi coordination bonds. However, 
during the interaction of Ca2+ with electron donors, functional groups of ChS, there was 
adsorption of its macromolecules. The adsorption mechanism of metal ions by ChS 
depends on several factors such as the pH of the solution, the molecular mass of ChS, the 
DD, particle size, and porosity, among others. Apparently, in solutions containing ChS and 
HA, Ca2+, PO4

3-, hydrogen phosphate, dihydrogen phosphate ions, and -NH3+ have to form 
electrostatic bonds between the polycation and low molecular mass counterions. In turn, 
the presence of -OH groups in the structure of ChS and HA allows the formation of 
hydrogen bonds. These considerations are in good agreement with published data. 
Investigations have shown that the interaction between ChS with HA occurs at рН <7. It 
is known that in dilute solutions of organic and mineral acids, ChS remains a salt, which 
causes the interaction between amino groups and metal cations.

In selected conditions of obtaining ChS with Са2+ composites, the рН of the reaction 
system was always <7. The interaction between ChS and HA occurred through electrostatic 
interactions and hydrogen bonds of ChS (-NH3

+) and НА (-НPO4
2- and -PO4

3-) functional 
groups [115].

Based on experimental and theoretical research methods, the following preliminary 
scheme for the formation of ChS/HA composites (Figure 7):

1.  dissolution of ChS at pH <7/protonation of ChS;
2.  formation of a ChS/HA suspension;
3.  formation of intermediate complexes with the help of electrostatic interactions of 

components with intensive stirring;
4.  growth of an HA crystal under ‘in situ’ conditions;
5.  neutralisation of the solution and isolation of the target product. 
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This method makes it possible to obtain ChS/HA composites with a controlled 
composition and morphology. Based on the literature, the chemical nature of the starting 
reagents, the order of their addition to the reaction mixture, and the duration of the 
synthesis are important factors affecting the nature of the interactions and the chemical 
composition of the final product.

7. The Use of ChS/HA Composites in Medical Practice
Natural bone comprises 69% Са3(РО4)2, 21% Col (polymer), 9% water, and 1% other 

components that form a very complex microstructure, which makes it very difficult to 
create a structure with similar high mechanical properties [117, 118]. In general, Ca3(PO4)2 
is important for human and mammalian health and because it represents the inorganic part 
of calcified tissues (bones, teeth, and feathers) and pathological lesions (caused by various 
diseases associated with calcium and phosphate deficiency) [119, 120]. In addition, 
Ca3(PO4)2 is the main source of phosphorus and is used in the production of feed, fertilisers, 
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detergents, and various phosphorus chemicals. Nanostructured crystalline Ca3(PO4)2, 
especially in the form of apatites, play an important role in tissue formation, forming the 
main inorganic building blocks of skeletal bones and teeth. These complex structures form 
several tens and hundreds of nanometre crystals of biological apatite. This process is 
carried out under the strict control of bioorganic matrices (Table 2) [121].

Table 2. Applications of preparations based on chitosan and hydroxyapatite (ChS/HA) 
composites.
No Composition of the initial 

components
Areas of application Ref.

1 ChS/HA ChS/HA composite has been 
investigated in many areas: 

bone tissue engineering, 
dentistry, and veterinary 

medicine

[122-
125]

2 ChS/HA (Ca/P ratio of 1.67) 
50:50

Bone implants, that is, for the 
prevention and treatment of 

osteoporosis

[126]

3 ChS/HA Chronic periodontitis 
(infectious and inflammatory 

dental disease)

[127]

4 ChS/HA and β-TKP/ChS ChS/HA is used for the 
treatment of osteoporosis 

and β-TKP/ChS is used for 
osteoplasty in dentistry

[128, 
129]

5 Porous-structural 
composites ChS/KHA and 

ChS/HA

Bone grafting, bone restoration [70, 130, 
131]

6 Composites consisting of 
ChS, KHA, tetracalcium 
phosphate, ammonium 

carbonate, and HA

Used as implants and bone-
three-dimensional materials for 

bone defect engineering

[132]

7 ChS/Ag/HA-poviargol 
containing composition

Orthopaedic microimplants [133]

8 ChS/calcium phosphate 
composite

Bone engineering [134]

9 ChS/HA/Ag As an antibacterial (e.g., 
against Escherichia coli ATCC 

25922)

[135]

10 HA/ChS/Ag-poviargol Orthodontic microimplants [107]
11 ChS/nano HA Bone engineering [80]
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No Composition of the initial 
components

Areas of application Ref.

12 Electrospinning fibres 
of nano-HA/ChS and 
a composite based on 

polylactic acid

The treatment of standardised 
defects of the cranial vault in 

rats

[136]

13 ChT/HA Bone defect engineering [137]
14 3D ChS/HA and HA/ChT 

composite
Bone grafting in bone 

engineering
[138, 
139]

15 ChS/Col/HA Bone regeneration [65, 97, 
140]

16 ChS/nano-HA and ChS/
starch/nano-HA

For the prevention and 
treatment of osteoporosis 
bone regeneration caused 

by osteoporosis, bone tissue 
engineering

[78, 105, 
141, 142]

17 ChS-coated apatite grafts In bone tissue engineering [77]
18 HA/ChS graft Bone and osteochondral 

defects
[79]

19 ChS/Col/HA In bone restoration, 
transplantation, and treatment 
of bone recognition defects

[143, 
144]

20 Natural HA/ChS For the treatment of composite 
bone defects

[92]

21 ChS/HA and ChS/calcium 
phosphate hydrogels

Promote bone formation and 
growth in the treatment of bone 

defects

[145]

22 ChS/HA Composites have been 
proposed as biomaterials for 
restorative dentistry, tissue 

engineering for alveolar bone 
and periodontal transplantation 
for complex dental treatment

[146]

23 ChS/HA and ChS/HA/
polycaprolactone

Dental tissue engineering [147, 
148]

24 ChS/HA nanocomposite Dental fillings [149]
25 ChS/calcium phosphate C Composites suitable as 

a regulatory agent for covering 
the pulp in dental caries

[150]

26 ChS/HA To cover the surface of 
titanium implants

[151]
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No Composition of the initial 
components

Areas of application Ref.

27 ChS/HA ChS/HA composite is intended 
for enamelling teeth and 
sealing damaged enamel 

surfaces

[152, 
153]

28 ChS/nano HA Recommended for use in bone 
tissue engineering

[154]

29 ChS/HA + polybutyl 
succinate, bone marrow 
mesenchymal stem cells, 
Col, alginate, insulin, etc.

Bone grafting [155]

30 ChS/HA/carbon nanotubes Proposed as artificial bones [156]
31 Porous and block 

composite materials 
from montmorillonite 

nanoparticles and HA from 
chrysotile, ChT nanofibrils 
and nanofibers on the base 

of ChS

Tissue engineering and 
transplantology

[157]

32 ChS/HA Bone tissue engineering [158]
33 KHA/ChS In medicine (KHA melting in 

an isotonic solution increase 
as the ChS concentration 

increases)

[159]

34 ChS/HA/magnetite Cell proliferation and bone 
growth

[160]

35 ChS Dental surgery [161]
36 HA/Col Bone tissue engineering [162]
37 ChS/HA Used at internal bone fracture [163]
38 ChS/Col Bone tissue engineering, for 

diseases associated with bone 
defects

[164]

39 ChS/calcium phosphate Bone grafting [165]
40 ChS/tricalcium and 

monocalcium and dicalcium 
phosphate

Veterinary practice 
(osteoporosis and 

osteomalacia)

[166, 
167]

Much work has been done to elaborate drugs based on HA and other calcium phosphates 
to overcome these problems. Natural and artificial polymers are used to improve the 
physicochemical properties of these drugs [42]. ChS is specifically relevant among natural 
polymers owing to its good matrix formation and antibacterial properties. The materials 
used to fill bone defects must have four main properties: osteoconduction, osteoinduction, 
osseointegration, and osteogenesis. All these properties are present in ChS. Most 
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importantly, composites with HA and other calcium phosphates are distinguished by high 
biological degradation, bioactivity, and antibacterial properties in the correction of bone 
tissue cell defects [168-171]. NH3

+ of ChS ensure it readily interacts with DNA, proteins, 
lipids, charged organic substances or synthetic polymers. These properties of ChS have 
increased the possibility of using it in composites containing various inorganic and organic 
compounds in bone tissue engineering [172, 173]. HA/Col nanocomposites are composed 
of a microstructured porous system resembling bones. However, Col is expensive, can have 
difficulty binding to bone Col, and does not have suitable flexibility. The introduction of HA 
into the ChS matrix significantly increases its osteoconductive and mechanical properties 
[174]. The specific properties of ChS, including its biodegradation, biological flexibility, 
viscosity, and anti-infective properties, make it an ideal polymer matrix for HA [175].

8. Conclusion
A vast amount of research is being carried out on ChS/HA composites. Each work is unique 

in its own way and is of fundamental applied interest. However, the available information on 
the chemical interaction, the influence of the ChS/HA molar ratio, and the molecular weight of 
ChS on the composition, morphology, and properties of the composite is insufficient. Hence, it 
is necessary to develop new methods that reduce the crystallisation time of HA in the presence 
of biocompatible polymers. In this regard, optimisation and improvement of the method for 
obtaining polymer/HA composites based on B. mori ChS and studying the properties and 
application of these composites are of scientific and practical importance.

9. Abbreviations
AKP  Amorphous calcium phosphates
ChT Chitin
ChS Chitosan
Col Collagen
CMC Carboxymethylcellulose
CGX Cellulose Gluconacetobacter xylinus
KHA Carbonate-hydroxyapatite
DD Degree of deacetylation
DCDH Dicalcium phosphate dihydrate
DNA Deoxyribonucleic acid
EDTA Ethylenediaminetetraacetic acid
G Gelatine
HA Hydroxyapatite
MW Molecular weight
MC Methylcellulose
MKChS Microcrystalline chitosan
NPs Nanoparticles
OKP Orthocalcium phosphate
OMC Organomineral nanocomposite
PVA Polyvinyl alcohol
PMMA Polymethyl methacrylate
TKP Tricalcium phosphate
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