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Abstract 

This work presents, for the first time, the extraction and characterization 

of chitin from the shell of the freshwater crab species Potamon algeriense 

with a standardized and revised chemical method. Chitin and chitosan 

were isolated following demineralization, deproteinization, decolouration 

(raw chitin), and deacetylation (chitosan). After boiling, drying, and 

grinding, 62.12% of the ground shell was obtained. A yield of 40.92% was 

obtained after demineralization of ground crab shell, while after the 

deproteinization process 8.74% was obtained. After decolourization, 

8.27% of raw chitin was obtained, and the final amount of chitosan 

extracted from the crab shells was approximately 5.89%. We also 

characterized the isolated chitin by determining its physicochemical 

properties using X-ray powder diffraction (XRD), Fourier transform 

infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). 
 

Keywords: Chitin, chitosan, deacetylation, freshwater crab, Potamon 

algeriense 

 

Received:     15.03.2019 

Accepted:     02.05.2019 

mailto:soufiane.fadlaoui@gmail.com


S. Fadlaoui, O. El Asri, L. Mohammed, A. Sihame, A. Omari, M. Melhaoui 

24 
Progress on Chemistry and Application of Chitin and its Derivatives, Volume XXIV, 2019 

DOI: 10.15259/PCACD.24.002 

 

1. Introduction 

Chitin is the second most abundant biopolymer in nature, after cellulose. It is usually 

isolated from the exoskeletons of invertebrates, insects, marine diatoms, sponges,  

mollusks, coralline algae, cell walls of certain fungi, and crustaceans like crabs, shrimps, 

and lobsters by chemical processes using strong acids and bases [1–6]. The colour of chitin 

is light yellow to brown, and the appearance of chitin is as flocculence or a filiform solid. 

In addition, chitin is not soluble in water [7]. Chitin does not have a single chemical 

structure, but many. It includes several polysaccharides composed of N-acetyl-β-D-

glucosamine units (from 50 to 100%) and D-glucosamine units (from 0 to 50%). 

Structurally, chitin is a straight-chain polymer composed of β-1,4-N-

acetylglucosamine, and it is classified into three different natural polymorphs, α-, β-, and 

γ-chitin [8,9], with α-chitin being the most common in nature and having a structure of 

antiparallel chains, usually isolated from the exoskeleton of crustaceans and more 

particularly from shrimps, crabs, and lobsters [5]. β-chitin can be obtained from squid 

pens. It has intra-sheet hydrogen bonding by parallel chains [10,11]. Meanwhile, γ-chitin, 

found in yeast and the cell walls of certain fungi, has not been completely identified. It 

has been proposed that it is a mixture of two parallel chains and one antiparallel chain. 

[11,12] have suggested that γ-chitin can be a combination of α and β structures rather than 

a different polymorph.  

Because chitin has a compact structure, it is insoluble in most solvents [13,14]. 

Therefore, chemical modifications of chitin are performed [15]. The most common 

derivative is chitosan, a straight-chain polymer of glucosamine and N-acetylglucosamine, 

hydrophilic, natural, cationic, nontoxic biopolymer derived from partial N-deacetylation 

of chitin [16–18].  

The last three decades have seen active research into potential usual applications of 

chitin and its derivatives, mainly chitosan. Because of its biodegradability, 

biocompatibility, and non-toxicity, chitosan has a wide range of applications in different 

fields, e.g., cosmetics, agriculture, food, pharmacy, biomedicine, the paper industry, paint 

and textile industries, wastewater treatment, wound healing, and drug delivery systems 

[17–43]. Chitosan and chitosan oligomers are also known for their biological activities, 

such as their antimicrobial [41–55], antitumor [39,40],  and hypocholesterolemic functions 

[41]. 

The carapace waste of crustaceans is constituted mainly of 30–50% calcium carbonate, 

30–40% protein, and 20–30% chitin. Nevertheless, these constituents are changeable, 

depending on the species and seasons [49]. To quote some examples, the shell waste of 

the snow crab Chionoecetes opilio and the northern prawn Pandalus borealis contains 

approximately 17–32.2% chitin [50–59]. It has been estimated that the chitin content of 

the blue crab was 14%. It was also determined that the grey shrimp Crangon crangon 

contains 17.8% chitin [1], while the speckled shrimp Metapenaeus Monoceros contains 

4.5–7% chitin [52]. 

The freshwater crab, Potamon algeriense [53], belongs to the family of the Potamidae, 

which is the largest of all freshwater crab families and comprises 95 genera and over 505 

species [54,55]. P. algeriense can be found in North Africa, exclusively in three countries, 

Morocco, Algeria, and Tunisia [54]. In Morocco, the species has been reported from the 

north in the watershed of the Oued Laou near Chefchaouen, from the Northeast in the 

watershed of Moulouya, and from the Middle Atlas in the Oued Oum Rbia watershed near 

Khenifra. Despite their wide distribution, the population of P. algeriense has not been 

commercially evaluated. In fact, freshwater crabs are also an important source of chitin, 

like the other crustaceans. 

The aim of this study was to extract and determine the yield of chitin and chitosan from 

the carapace of P. algeriense, known as the freshwater crab of Maghreb, and it has not 
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been economically evaluated, besides its wide range of applications in numerous industrial 

areas. 

 

2. Materials and Methods 
2.1. Chitin and Chitosan Extraction 

Specimens of the freshwater crab Potamon algeriense [53] from Oued Zegzel 

northeast of Morocco were used in this study (Fig. 1 and Fig. 2). For extracting chitin and 

chitosan, crabs were boiled for 15 min in order to take them out from their carapaces. The 

shells were scraped free of soft tissue, cleaned, rinsed, and dried at 60°C for 24 hours. The 

shells were ground with a Retsch mill (model Brinkmann Rmo) to obtain a coarse powder 

and were then sieved to a 350-µm diameter. The extraction of chitin and chitosan from the 

crab carapace was performed with three repetitive analyses. Chitosan was extracted from 

the shells by means of mineralization, deproteinization, decolouration, and deacetylation.  

 

 
 

Figure 1. The freshwater crab Potamon algeriense. 

 

The ground shells were then soaked very slowly (to avoid overflow of the sample due 

to the massive emission of CO2 gas) in a 1 N HCl solution for six hours at room 

temperature to remove calcium salts (demineralization), with a solid/solvent ratio of 1:15 

(w/v) [56]. The decalcified shell was collected on Whatman paper filter in a Buchner 

funnel. The resulting solid was washed with deionized water until it was neutralized. Then, 

the demineralized samples were dried and weighed. 

Chitin deproteinization was carried out under standard autoclaving conditions (15 

psi/121°C). The demineralized shell was treated with aqueous sodium hydroxide solution 

(3%) for 20 min at 15 psi/121°C, and the solid/solvent ratio was 1:10 (w/v) [49]. The 

absence of proteins was indicated by the absence of colour of the medium at the last 

treatment. The resulting solution was then washed to neutrality, filtered, dried, and 

weighed as mentioned above (Fig. 3). 

For the purpose of decolouration, the obtained chitin residue was treated further with 

0.32% sodium hypochlorite solution for 10 min, with a solid/solvent ratio of 1:10 (w/v) 

[56]. Following decolouration, the discoloured chitin was collected and washed with 
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deionized water until it was neutralized. It was then dried at 60°C for 24 h to obtain 

purified discoloured crab chitin. 

 

 
 

Figure 2. Area of the study in Oued Zegzel, Morocco. 

  

For deacetylation, purified crab chitin was treated under the conditions of 15 psi/121°C 

with 50% NaOH for 30 min, and a solid/solvent ratio of 1:15 (w/v) was used [57]. The 

resulting chitosan was filtered, washed, dried, and weighed. The yield of chitosan 

extracted from crabs was then calculated. All data collected from this work were subjected 

to statistical analysis using Statistical Package for the Social Sciences (SPSS) [58]. 

 

2.2. Characterization of Chitin 

2.2.1. Fourier Transform Infrared Spectroscopy (FTIR) 

The infrared spectra were registered in a Fourier transform infrared (FTIR) 

spectrometer (Nicolet Magna, Nicolet Analytical Instruments, Madison, WI) connected to 

a PC with Omnic software (Thermo Electron Corp) for data processing. The analyses were 

directly performed on finely powdered Potamon algeriense material. The samples were 

prepared in KBr pellets at a concentration of 5% (w/w) [59]. They were placed into the 

crystal cell and the cell was clamped into the mount of the FTIR spectrometer. In this 

work, we used a range of 500–4500 cm–1 then the automatic signal gain was collected and 

rationed against a background spectrum recorded from the clean empty cell. 

2.2.2. X-Ray Diffraction (XRD) 

The degree of crystallinity and the size of the crystallites were determined by means 

of the X-ray diffraction (XRD) method. The same finely ground powder samples as used 

for FTIR were used for this analysis. The polymorphism of the crystals in the samples was 

determined by an X-ray diffractometer (Phillips) with 30 kV and 40 mA Cu Kα radiations. 

Sample analyses were carried out in the 20–60° range of the 2Ө angle, with step sizes of 

0.020° and a point measurement time of 2 s. 
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2.2.3. Thermogravimetric (TG) Analysis 

Thermogravimetric (TG) analysis of this material was carried out with a Perkin Elmer 

TGA 7 apparatus with a platinum sample holder using Pyris software for data handling. 

Measurements were performed in a nitrogen atmosphere at a heating rate of 15°C min–1. 

The samples were heated up to at least 700°C, starting from 50°C.  

 

3. Results and Discussion 
3.1. Chitin and Chitosan Extraction 

Three repetitive analyses were performed for the purpose of calculating the quantity 

of chitosan extracted from the shells of P. algeriense. Dried and ground crab shells in the 

wet weight state were quantified with a ratio of 62.12%. The results are shown in Fig. 3 

and Table 1. 

 
 

Figure 3. Isolation process of chitin and preparation of chitosan from crab shells. 
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About 22 crab species from 4500 species over the globe have been commercially 

evaluated [54,60]. In ecological investigations, crabs are considered biological indicators 

[61]. Numerous studies have concentrated on the biological, chemical, and ecological 

aspects of freshwater crabs [61–65], but rare studies have been carried out on the 

extraction of chitin and chitosan [66].  

The quantity of chitosan is estimated to be approximately 1.560 million tons 

throughout the world [67]. The shells of crustaceans currently present the main industrial 

source for extraction of this biopolymer. One hundred billion tons of chitin are generated 

from arthropods, mollusks, and the cell walls of certain fungi every year. Cauchie et al. 

(1997) estimated that the annual production of this polysaccharide in freshwater 

ecosystems is only approximately 600 million tons [67]. Knoor (1984) stated that chitin is 

the most under-exploited polysaccharide around the globe. There is currently a total of 

238 genera and 1.476 species of known freshwater crabs from 14 families around the 

world [53] that could be exploited as sources of chitosan. 

The chemical process of isolating chitin and chitosan from crab shells after drying and 

grinding results in a yield of purified chitin of 8.27% and a yield of chitosan of 5.89%. 

The results are presented in Fig. 3 and Table 1.  

 

Table 1. The yield (%) of chitosan isolated from crab shells. 

 

Isolation process % Yield 

Wet weight 

Weight of boiled shell 

Weight of dried shell 

Weight of ground shell 

 

Dry weight 

Ground shells 

Demineralized shells 

Deproteinized shells 

Decoloured shells (Raw chitin) 

Deasetiled shells (Chitosan) 

100.00 

64.85 

62.32 

62.12 

 

 

100.00 

40.92 

8.74 

8.27 

5.89 

 

In the present manuscript, the yield after boiling the specimens was quantified as 

64.85%, which was statistically significant (P>0.05) according to the yield of dried and 

ground freshwater crab shell. These results were in accordance with those acquired with 

the sand crab Portunus pelagicus [67, 68]. Approximately 8.27% of chitin was found in 

the ground shells of P. algeriense. The results obtained by Mol [69] showed a yield of 

around 3–6% chitin. Chakrabarti (2002) reported that the brown shrimp Metapenaeus 

monoceros contains about 4.5–7% chitin in shell waste [62], while Hertrampf and Piedal-

Pascual (2000) declared that the content of chitin extracted from the snow crab 

Chionoecetes opilio was nearly 10.6% [70]. The quantity of chitin was 26.6% in 

Chionoecetes opilio [71] and 17.8% in the grey shrimp Crangon crangon [72]. 

Tharanathan (2003) reported that 14% of chitin was found in blue crab, while in 

Chinoecetes opilio and Pandalus borealis chitin content ranged from 17 to 32.2% [50,51]. 

Cho (1998) declared that the difference in the potential amount of chitin and chitosan 

between various crabs depends on the species and the seasons [49]. 

Chitosan is a biopolymer resulting from alkaline deasetilation of chitin. It is found 

mainly in the exoskeleton of arthropods and is quite easy to isolate methodologically. In 

this paper, 5.89% of chitosan was extracted from the freshwater crab P. algeriense. Due 



 ISOLATION AND CHARACTERIZATION OF CHITIN FROM SHELLS    

OF THE FRESHWATER CRAB POTAMON ALGERIENSE 

   Progress on Chemistry and Application of Chitin and its Derivatives, Volume XXIV, 2019 
29 DOI: 10.15259/PCACD.24.002 

 

to the easier and inexpensive method of collecting and capturing freshwater crabs 

compared to that of marine species, freshwater crabs could be raised as a source of chitin 

and they may also present a new alternative fishing material in freshwater ecosystems. For 

all of these reasons, freshwater crustaceans, especially crabs, could be commercially 

evaluated by producing chitin and chitosan because of the ease of processing for chitin 

extraction. 

 

3.2. Characterization of Chitin and Chitosan 

3.2.1. Fourier Transform Infrared Spectroscopy  

The infrared (IR) spectra of chitin from the crab species potamon algeriense are shown 

in Fig. 4. These spectra presented peaks at 890 cm–1, which is due to the C–H bonds of 

the anomeric carbon. Several authors used this band to characterize the configuration of 

the anomeric centre from the glucopyranosicyclic residues of chitin:C-H axial at 891±7 

cm–1 and C–H equatorials at 844±8 cm–1 atoms  [72]. Therefore, the chitin of potamon 

algeriense is characterized by the β-configuration in the anomeric centre (C1) of this 

polysaccharide. 

On the other hand, these spectra were characterized by two wide peaks. The first wide 

peak lies between 913 and 1108 cm−1. This range corresponds to C=O, so this result is also 

indicative of chitin [73]. The second wide peak is between 1242 and 1570 cm−1. This 

interval includes the significant amide bands that correspond to the amide ΙΙ of N–H and 

the amide ΙΙΙ of C–N. 

Finally, we found two low peaks (2801–2889 cm–1) corresponding to amide B (2800–

2990 cm–1) [75,76]. The results indicate a system containing amino-polysaccharide chitin 

alongside proteins. 

 

 
 

Figure 4.  Fourier transform infrared (FTIR) spectra of chitin obtained from potamon 

algeriense in the range of 4500–400 cm−1. 
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3.2.2. X-Ray Diffraction  

To detect the orientation of the crystal structures and to understand the functional 

properties of the organic matrix components in potamon algeriense, the finely ground shell 

powder samples were analysed by XRD. The XRD pattern of potamon algeriense shell is 

shown in Fig. 5. The XRD analysis revealed that the biggest diffraction face intensity is 

at 2θ=29.4. This intensity corresponds to the rhombohedra calcite. Rahman et al. (2014) 

confirmed that this diffraction angle (2θ=29.4) in the calcite (104) indicates the presence 

of Mg–calcite [74].  

The comparison of our XRD diffraction results with different types of calcite (012, 

140, 110, 113, 202, 018, 116, 122, 211) shows that is similar to the strongest faces of 

calcite. Therefore, we showed different crystal surfaces in our case. We found that the 

crystalline components in the shell of potamon algeriense exhibited the characteristics of 

chitin and collagen calcite planes. 

 

 
Figure 5.  X-ray diffraction (XRD) analysis of chitin obtained from potamon algeriense. 

The diffraction scan identifies the mineral form of calcium carbonate with calcitic crystal 

planes, which were nucleated by chitin and collagen matrices. 

 

3.2.3. Thermogravimetric Analysis  

Concerning the chitin obtained from potamon algeriense, the mass loss was observed 

in four stages (Fig. 6). In the first stage, there was a mass loss of 5%. This loss was due to 

water evaporation within the structure. In the second stage, mass loss amounted to 15.3%. 

The mass loss observed at this stage was due to the beginning of the decomposition of the 

chitin molecules. In the third stage, mass loss was 22.8%, corresponding to the continued 

decomposition of chitin. During the fourth step, we observed the biggest mass loss rate 

(24.8%). The mass loss observed at this stage was due to the decomposition of calcite in 

the collagen calcite. These results show the good thermal stability of the extracted chitin. 
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Figure 6.  Thermogravimetric analysis (TGA) of chitin obtained  

from potamon algeriense. 
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